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The genes required for stem cell specification and lineage restriction during embryogenesis also play funda-
mental roles in adult tissue regeneration and cancer. This ‘‘development-regeneration-cancer’’ axis is exem-
plified by the vertebrate pigmentation system. Melanocytes exhibit almost unlimited self-renewal capacity
during regenerative processes such as mammalian hair recoloration and zebrafish fin regeneration. Mela-
noma utilizes many regulatory signals and pathways required during ontogeny and regeneration. A discus-
sion of these interconnections highlights how studies of stem cell function in embryonic and regenerative
contexts can yield insights into melanoma biology.

The pigmentation of the vertebrate skin has been well studied in

part due to the great variety of mutations that affect diverse spe-

cies from human to zebrafish. Many of these mutations are not

fatal and have allowed for a detailed examination of the involved

genes. These pigment genes have been classically studied in the

context of developmental aberrations, but more recent work has

focused on the remarkable regenerative capacity of the verte-

brate pigmentation unit, including the adult melanocyte. Several

of the genetic requirements of embryonic pigmentation are

strongly shared with the adult regenerative unit. These same

genetic pathways have been demonstrated to be important in

the development of melanoma, a deadly cancer that originates

in the melanocyte. All three of these processes—embryonic de-

velopment, tissue regeneration, and cancer formation—have

a great deal of cellular and genetic events in common. The initial

events involved in embryonic development of the melanocyte lin-

eage depend upon neural crest stem cell specification, followed

by migration/epithelial-mesenchymal transitions, niche localiza-

tion, and maintenance of a balance between multipotency and

differentiation. The adult melanocyte regenerative unit (com-

posed of adult stem cells and progenitor cells) likely becomes

specified during these critical embryonic periods, and the

cellular processes it demonstrates are similar to those of the

embryonic unit. The regenerative unit, however, differs from em-

bryogenesis in the need for unlimited, but tightly regulated, self-

renewal throughout the lifetime of the organism. Many of the

same processes that we have come to associate with the cancer

phenotype, such as self-renewal and migration capacity, are

shared with both the embryonic and regenerative cells. The

purpose of this review is to highlight recent advances in under-

standing these commonalities, using the melanocyte system

as a prototypical example.

Function of Pigmentation
One of the more striking aspects of vertebrate pigmentation is

the interspecies variety of coloration, patterning, and function.

In some species such as birds, pigmentation serves an important

role in identification of mating behaviors (Chaine and Lyon,

2008). In zebrafish, a variety of subspecies, each with different

pigmentation patterns (i.e., Danio rerio with horizontal stripes,

Danio nigrofascitus with vertical stripes, etc.), indicates that

a combination of genetic and environmental cues play a role in

the adult pigment pattern. Pigmentation plays a role not only in

behavioral choices, but strongly protects against ultraviolet light

induced changes in DNA structure, since the skin is almost con-

stantly exposed to high levels of this potential mutagen (Meredith

and Sarna, 2006). Melanin, the principal component of the mela-

nocyte, is one of the most potent free radicals in humans and

helps to protect from the high levels of reactive oxygen species

that would otherwise damage DNA in skin cells.

The Developmental Biology of the Melanocyte
Early Events in Neural Crest Specification

All pigmented melanocytes are derived from a group of migratory

embryonic cells referred to as the neural crest. During gastrula-

tion, the NC is induced at the edge of the neural plate on the bor-

der between the neural and nonneural ectoderm (Erickson and

Reedy, 1998). The derivatives of the neural crest are extensive, in-

dicating that the stem cells which emerge during embryogenesis

are truly multipotent but undergo gradual lineage restriction. The

anatomic location of the crest cell determines, in part, their devel-

opmental potential. Cells in the mid-/hindbrain region form the

cranial neural crest whose derivatives include jaw cartilage and

glia. The vagal and sacral crest gives rise to the neurons of the

enteric nervous syetm. Derivatives such as adrenal cells and

sensory ganglia come from the trunk neural crest. Although pig-

mented melanocytes are typically considered to emerge from

the trunk neural crest, studies in avians have indicated consider-

able developmental plasticity such that cranial neural crest may

give rise to melanocytes as well (Baker et al., 1997).

The early induction of the neural crest is at least in part depen-

dent upon intact BMP signaling, as the BMP2 knockout mouse

shows an almost complete absence of cranial and migratory

neural crest cells (Kanzler et al., 2000). In the chick, BMP4/7 is

induced downstream of Notch signaling, the latter of which is re-

quired for early neural crest development in the zebrafish as well
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(Cornell and Eisen, 2005). The period after induction but before

migration requires the transformation of the neural crest stem

or progenitor cell to undergo an epithelial-to-mesenchymal tran-

sition (EMT) in which downregulation of cell adhesion molecules

such as E-cadherin allow for widespread and stereotyped cellu-

lar movements. One important family of genes involved here are

snail/slug members, which transcriptionally repress E-cadherin

expression and allow for EMT to occur (Cano et al., 2000). Onset

of snail transcription is coincident with migration of neural crest

precursors from the neural plate.

The notch family of proteins play at least 3 distinct roles in neu-

ral crest development. First, it induces cranial neural crest devel-

opment in the frog (Glavic et al., 2004) and chick (Endo et al.,

2003). Second, notch activation plays a crucial role in diversifica-

tion of neural crest progenitors, including the melanocytes. In the

trunk premigratory NC cells, notch signaling prevents receiving

cells from adopting a neuronal fate, instead becoming unspeci-

fied neural crest precursors (Cornell and Eisen, 2002). Support

for a role of notch in the generation of melanocyte precursors is

further supported by the zebrafish mindbomb or whitetail

mutant. This homozygous lethal mutant encodes a defective

E3-ubiquitin ligase that is necessary for adequate cleavage of

the notch ligands on the presenting cell (Itoh et al., 2003). Loss

of this cleavage leads to a deficiency of notch signaling in the

receiving cell. The two names for this mutant adequately reflect

the variety of phenotypes observed, which include a bias toward

a neuronal lineage (thus, mindbomb) but also an almost complete

lack of neural crest derivatives, including crestin-positive premi-

gratory cells and differentiated melanocytes beyond the cranial

region (Kelsh et al., 1996). Whether notch plays a role in prolifer-

ation or survival of these neural crest progenitors is unclear and

awaits further analysis. The third and final important role of notch

signaling is in the maintenance of the adult melanocyte stem cell,

which will be more fully discussed below.

Establishment of the Multipotent Neural Crest Stem Cell

Multipotent neural crest stem cells (NCSCs) that give rise to

a large number of lineages typical of this cell (Sieber-Blum and

Cohen, 1980) can be isolated flow cytometrically using an anti-

body to p75, and these cells demonstrate self-renewal capacity

(Morrison et al., 1999). Lineage tracing experiments of trunk neu-

ral crest cells supports differentiation into at least four derivatives

(melanocytes, glia, sensory neurons, and adrenal cells) (Bronner-

Fraser and Fraser, 1988). Whether all species have neural crest

stem cells with true multipotency remains unclear, as zebrafish

appear to determine fate restriction prior to overt migration,

but this may be an artifact of the rapid development of the zebra-

fish embryo. The mechanisms by which a NCSC becomes line-

age restricted into the melanocyte fate has been well studied,

and data support the notion that there is a bipotent glial-melano-

cyte lineage progenitor (Dupin et al., 2000), which then becomes

further restricted to an unpigmented, but committed, melano-

cyte lineage cell referred to as the melanoblast. This commit-

ment occurs either within the neural tube or after migration has

commenced. The specific genes involved in each state of mela-

nocyte development from the neural crest, as is understood from

genetic model organisms and human patients, are discussed

below and outlined in Figure 1.

Restricting Neural Crest Stem Cells toward

a Melanoblast Fate

Initial data on the importance of Wnt signaling on neural crest-

derived melanoblasts came from observations of Wnt1;Wnt3a

knockout mice. In the Wnt-deficient animals, almost no melano-

blasts, marked by positivity for dct, were seen (Ikeya et al., 1997).

Studies in the fish have suggested that Wnt signaling, through

activated beta-catenin, promotes a fate decision between mela-

nogenesis and gliogenesis, since overexpression of beta-

catenin leads to an expansion of melanocytes but a loss of glial

derivatives (Dorsky et al., 1998). Using a transgenic approach in

which Wnt1 was activated in a neural precursor line, Pavan

demonstrated that Wnt1 is sufficient for inducing an increase in

melanized (i.e., terminally differentiated) melanocytes, demon-

strating that Wnt1 could influence fate decisions in vivo. Impor-

tantly, beta catenin appears to also expand the population of

neural crest-derived melanoblasts, an effect that is at least partly

Figure 1. Melanocyte Development from the Neural Crest
Early neural crest specification is dependent upon interactions between wnt, notch, and bmp signaling. Slug transcription marks an early specified neural crest
cell and is coincident with migration. Gradual lineage restriction toward the melanoblast fate is dependent upon mitf, EDNRB, and c-kit signaling. The embryonic
melanoblast and adult melanocyte stem cell (MSC) share some overlapping molecular markers, particularly dct. It is unclear if there are some adult MSCs which
arise independently of the embryonic melanoblast.
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dependent upon endothelin-3 (Dunn et al., 2000). Finally, Wnt

signaling is also important for terminal differentiation of melano-

blasts in vitro, and it thus appears that Wnt plays a multifactorial

role in melanocyte lineage decisions.

But in what ways does Wnt/beta-catenin drive the melanocyte

lineage? The most direct evidence comes from observations that

beta-catenin could directly activate the melanocyte-specific mitf

promoter (Takeda et al., 2000). Mitf itself directly interacts with

LEF1, which is part of the transcriptional complex that includes

beta-catenin. Mitf and LEF1 act synergistically to increase tran-

scription of dct (Yasumoto et al., 2002), which sets up a feedback

loop in which mitf is a direct transcriptional target of beta-cate-

nin, and then interacts with the beta-catenin pathway to induce

markers of the restricted melanoblast fate.

Melanocyte Specifiers Drive the Production

of Pigmented Derivatives

The importance of mitf in melanocyte development is widely

seen in both model organisms, such as mice and zebrafish,

but also in human patients with the Waardenburg syndrome

Type IIa (Widlund and Fisher, 2003). The mitf phenotype was ini-

tially identified in a mouse mutant in 1942 (Hertwig, 1942), nota-

ble primarily for its lack of melanocytes rather than a defect in

melanin synthesis. This was really the initial observation that

mitf was required for either specification or survival of the mela-

nocyte lineage in mammals. Mitf encodes a transcription factor

that belongs to the myc family of bHLH-Zip factors (Moore,

1995). Mitf-M, the melanocyte-specific isoform in humans, is

well conserved among vertebrate species, and closely related

genes also appear in the genomes of invertebrates such as

C. elegans (Rehli et al., 1999). In the mouse, 24 alleles of mitf

have been described, which lead to a wide variety of pigmenta-

tion defects, ranging from white coats to spotted coats. The ze-

brafish nacre mutant, which harbors a mutation in the mitfa gene,

is completely devoid of both embryonic and adult melanocytes

(Lister et al., 1999). Mitf regulates the melanocyte lineage in

part by acting as a transcriptional activator of several pigment

cell-related genes, including dct, tyrosinase (Yasumoto et al.,

1994), tyrp1 (Yasumoto et al., 1997), c-kit (Tsujimura et al.,

1996), AIM1 (Du and Fisher, 2002), and MC1r (Aoki and Moro,

2002). Fate-mapping studies suggest that mitf is required for me-

lanoblast survival. This occurs prior to migration from the neural

tube (Hornyak et al., 2001), an effect that is in part related to up-

regulation of the bcl2 gene (McGill et al., 2002). Bcl2 and mitf in-

teract to promote the survival of the melanocyte lineage, which

likely explains why mitf mutants have defects in melanocyte

numbers and not generally just defects in melanin synthesis.

Data from humans, mice, and zebrafish have provided a robust

literature regarding the role of c-kit in melanocyte development.

In humans, heterozygous mutations of c-kit lead to the pigmen-

tation disorder referred to as piebaldism (Giebel and Spritz,

1991). Mouse mutants for the c-kit receptor tyrosine kinase

(Geissler et al., 1988) or its ligand, steel/stem cell factor (Williams

et al., 1990), exhibit various degrees of pigmentation defects as

well as hematopoietic and germ cell deficiencies. Kit and the kit-

ligand play a complex role in melanocyte development, survival,

and migration, which appears to depend in part upon the specific

species. Kit mutants never develop the normal number of mela-

nocytes; this may be due to a failure of melanoblast migration in

the mouse (Wehrle-Haller and Weston, 1995) or due to melano-

blast survival in the fish (Parichy et al., 1999). Kit is also required

for mammalian melanoblast differentiation in part due to its co-

operation with mitf signaling (Hemesath et al., 1998; Wu et al.,

2000). Analysis of the zebrafish-sparse mutant, which corre-

sponds to a kit mutation, reveals that embryonic melanocytes

are formed (albeit to a lesser degree than normal) but that these

melanocytes die by 11 days postfertilization, strongly indicating

a role for kit in melanocyte survival. The zebrafish mutant also

supports a role for kit in migration of melanocyte precursors,

since the mutants exhibit a greater proportion of mutant melano-

cytes that are found close to their site of origin than in wild-type

embryos. Finally, the development of the adult pigment pattern

of the zebrafish is abnormal in kit mutants, as they never develop

a population of early adult melanocytes referred to as early stripe

melanocytes. Because these cells are likely derived from a latent

pool of melanocyte stem cells, this data (along with a complete

lack of melanocytes in mouse kit mutants) suggests that kit plays

a role in the development of at least some melanocyte stem cells

in both mice and fish.

The role of the endothelins in neural crest and melanocyte de-

velopment was recognized over a decade ago, when knockout

mice for either the endothelin-B receptor (EDNRB) or its ligand,

endothelin-3 (ET3), were demonstrated to have an almost com-

plete lack of melanocytes (Baynash et al., 1994). In the mouse,

EDNRB is expressed in a subset of premigratory and migrating

neural crest cells and, in vitro, is coexpressed with the melano-

blast marker dct (Pavan and Tilghman, 1994). EDNRB is only re-

quired during a critical period of mouse melanoblast dispersal; its

absence during this period leads to an almost complete loss of

melanocytes in the offspring. (Lee et al., 2003) This would indicate

that the endothelin system is necessary not for initial specification

of a mammalian neural crest-melanocyte lineage but, rather, for

dispersal and survival of the melanoblasts. There appear to be

species-specific functions of the endothelins in pigment pattern

formation, as the zebrafish expresses EDNRB early in develop-

ment in migratory neural crest cells in the dorsolateral and ventro-

medial pathways, but the phenotypic defect of EDNRB mutation

(as seen in the rose mutant fish) does not manifest until the meta-

morphic period, when the adult pigment pattern emerges

(Parichy et al., 2000). This indicates that EDNRB likely plays

a role in neural crest migration in cells destined to become mela-

nocytes in most vertebrates, but that its requirement for differen-

tiation of latent precursors may be species specific. In vitro, ET3

causes a marked expansion of melanocytes from a quail neural

crest culture, due primarily to a large increase in proliferation (La-

hav et al., 1996). ET3 can expand the population of bipotent neu-

ral crest precursors that can give rise to both glial and melano-

cytic lineages, and addition of ET3 can revert differentiated

melanocytes toward a more bipotent state (Lahav et al., 1998).

Melanocyte Regeneration
Given the extensive knowledge of melanocyte development in

the embryo, it is rational to ask whether some of the same

genetic pathways maintain their importance in the adult melano-

cyte system. Along with the hematopoietic system, the adult skin

represents one of the most regenerative organs in vertebrate bi-

ology. On any given day, we generate millions of new epidermal

skin cells as well as hair, both of which are repigmented in an

identical fashion each day by the melanocytes. The coloration
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process of hair and skin differs somewhat, although the princi-

ples are largely the same. In humans, hair typically becomes re-

pigmented due to the transfer of melanin from a differentiated

melanocyte at the base of the hair follicle into the developing

new hair shaft. In the skin itself, melanocytes transfer melanin

to the surrounding keratinocytes, forming the ‘‘pigmentation

unit.’’ In mice, the hair shaft is pigmented in a manner analogous

to humans, but the skin is often (although not invariably) unpig-

mented. Zebrafish, another important model for melanocyte re-

generation, do not have ‘‘hair’’ in this sense, but they offer one

of the most genetically powerful systems for studying melano-

cyte regeneration, which is the fin regeneration model. Although

the epidermal component likely plays an important supportive

role in melanocyte regeneration, this review will focus on the

role of adult melanocyte stem and progenitor cells, since the ker-

atinocyte system has recently been reviewed (Fuchs, 2007). The

incredible longevity of hair pigmentation throughout the adult life

cycle strongly suggested the presence of a cell that would have

the characteristics of a stem cell: slowly cycling, harbored in

a protective niche, and unlimited self-renewal capacity.

Melanocyte Stem Cells in Mammalian Skin

Regeneration of the hair shaft itself, at early anagen, is known to

initiate in the bulge area of the hair follicle, where the keratinocyte

stem cells had been previously localized (Oshima et al., 2001).

Because individual hair follicles must be melanized during each

hair cycle, Nishimura used a dct-lacZ transgenic mouse to follow

the fate of individual melanoblasts during the hair recoloration

cycle (Nishimura et al., 2002). When neonatal mice were treated

with a neutralizing anti-kit antibody, the initial hair cycle of the live

animals were largely unpigmented. However, subsequent hair

cycles showed recoloration of the hair, which demonstrated

that there was a kit-independent population of melanocyte pre-

cursors. This was consistent with the work described above, in-

dicating that although kit is important for survival and migration

of melanocyte precursors and perhaps some stem cells, there

are large numbers of kit-independent melanocytes in the zebra-

fish mutants. When the anti-kit-treated hair was examined, there

was a residual population of kit-independent, dct+ melanoblasts

located in the bulge area of the follicle. Using a combination of

BrdU labeling and transplantation assays, these dct+ melano-

blasts fulfilled all the criteria of a stem cell compartment, includ-

ing very high rates of self-renewal. Because mouse skin is

typically unpigmented in contrast to humans, the authors gener-

ated K14-SLF mice (in which kit ligand or steel factor is

expressed in skin keratinocytes). These animals develop pig-

mented skin similar to humans, and the follicle bulge melanocyte

stem cells appear to migrate toward epidermal niches to allow

for skin pigmentation. Although this does not definitively prove

the location of the human epidermal melanocyte stem cell, it pro-

vides compelling reason to determine whether the hair follicle

bulge may be a common source of all pigment stem cells in

mammals. These data suggest that, much like the hematopoietic

system, there are populations of cells with stem cell/self renewal

capacity as well as those that would be considered ‘‘transient

amplifying’’ compartment when out of the primary niche.

Molecular Profiling of the Mammalian Melanocyte

Stem Cell

It is unlikely that dct alone identifies the melanocyte stem cell,

since it is a marker of virtually all melanocyte lineage cells, sub-

suming both stem cell and differentiated melanocytes. To better

define the nature of the stem cell, Osawa used the dct-Cre/CAG-

CAT-GFP transgenic system, in which all dct+ cells are identified

by GFP positivity (Osawa et al., 2005). After dissecting single hair

follicles from postnatal day 6 skin, two populations of dct+ cells

were isolated—those from the bulb matrix (differentiated mela-

nocytes) or the bulge region (melanocyte stem cells). These

single cells underwent transcriptional profiling using qRT-PCR

to compare the levels of a panel of melanocyte-related genes.

Surprisingly, the postnatal bulge area hair follicles were only pos-

itive for dct and pax3 and virtually negative for the markers tyros-

inase, silver, tyrp1, kit, mitf, sox10, EDNRB, mc1r, oa, and lef1

(the latter by IHC). Some of these markers were also decreased

in embryonic E16.5 melanoblasts (i.e., mc1r, oa, and mitf) but

were positive for ednrb, kit, and sox10. Thus, although the mela-

nocyte stem cells likely arise from the same neural crest-derived

population as the embryonic melanoblast, it is clear that once in

the adult niche, the molecular profile of the stem cell is quite dis-

tinct from that of either embryonic melanoblasts or differentiated

melanocytes in the hair matrix. The precise extent to which mitf is

expressed in the bulge melanocyte stem cell remains unclear

and warrants further investigation.

The molecular mechanism regulating self-renewal versus dif-

ferentiation of the stem cell remained unknown, but a recent

elegant analysis of the interaction of pax3 with Wnt and mitf pro-

vides some of the answers (Lang et al., 2005). Mitf acts in concert

with sox10 to regulate the dct promoter, but what regulates mitf

activity? Again using the murine hair follicle system, Lang noted

a population of cells within the hair follicle bulge that expressed

Pax3, consistent with the data above. Although Pax3 strongly

upregulates mitf expression itself, it also causes a strong repres-

sion of dct transcription under similar conditions. Mitf, pax3, and

sox10 all bind to an enhancer element in the dct promoter, which

is located nearby to a previously described LEF1-binding site.

Pax3 and mitf thus act as ‘‘competitors’’ on the dct promoter,

and this competition is relieved by beta-catenin binding to the

LEF1 site of the dct promoter. This explains how the Wnt/beta-

catenin pathway regulates the melanocyte lineage, since low

levels of beta-catenin will maintain the stem cell in an undifferen-

tiated state, but upregulation of beta-catenin will then relieve the

pax3-mediated repression of the dct promoter and promote

terminal differentiation into a mature melanocyte.

Notch in Embryonic Melanoblasts and Postnatal

Melanocyte Stem Cells

Nishikawa’s group noted that the E16.5 embryonic melanoblasts

abundantly express several members of the notch family, includ-

ing the notch-1 receptor and the jagged2 ligand, as well as the

notch target genes hes1, hes5, and hey1 (Moriyama et al.,

2006). To address the function of notch in adult melanocytes,

they performed conditional ablation of the RBP-J gene (a medi-

ator of notch signaling in the nucleus) in the melanocyte lineage

using a tyrosinase-Cre driver line. This led to a loss of hair pig-

mentation by the second postnatal hair cycle. However, because

the promoter used in this system was tyrosinase (a differentiated

melanocyte marker), it was difficult to directly ascribe a role for

notch to maintenance of the stem cell itself. Therefore, they ex-

amined notch-related genes in postnatal hair follicles and found

that the bulge melanoblasts (the putative melanocyte stem cell)

were positive for both NICD1 and hes1 and that these were
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downregulated in the differentiated melanocytes in the hair ma-

trix. Further supporting a role for notch in melanocyte stem cell

specification and/or maintenance, compound heterozygous

notch1+/�;notch2+/� mice are born with a normal pigment pat-

tern but become increasingly gray starting at the second hair cy-

cle (Kumano et al., 2008). To functionally assess whether notch

was required in the stem cell compartment, the authors then

treated 8-week-old mice with an oral gamma secretase inhibitor

(GSI), which blocks notch activity. These animals began to de-

velop gray spots on their hair at 2 weeks after treatment, and

these defects in hair pigmentation were maintained for at least

6 months after discontinuation of the GSI. Examination of the

bulge region of the hair follicles after GSI using the dct-LacZ sys-

tem revealed a marked decrease in the number of dct+ cells in

the bulge region, supporting at least a supportive if not essential

role for notch signaling in melanocyte stem cell maintenance.

Taken together, these data support a role for the notch pathway

in both embryonic melanoblasts as well as adult melanocyte

stem cells. The precise mechanism by which notch helps to

maintain melanocyte stem cells in a quiescent state and whether

notch directly interacts with pax3, mitf, or dct all await further

characterization.

Mammalian Hair Graying as a Tool for Understanding

Molecular Control of the Melanocyte Stem Cell

The observation that alterations which reduce notch signaling in

the melanocyte stem cell often lead to premature graying high-

lights the utility of hair graying for studying the melanocyte

stem cell. Since hair undergoes essentially constant cycling/re-

pigmentation throughout life, the gradual loss of hair coloration

with age (i.e., ‘‘physiologic aging’’) in both mouse and humans

suggested the possibility that defects in melanocyte stem cells

could play a role. To examine this, Nishimura used two mutant

Figure 2. Examples of Melanocyte
Regeneration
Repigmentation of mammalian hair requires an
intact melanocyte stem cell. In the bcl2�/� mouse
(A), hair graying is related to failure to maintain the
melanocyte stem cell in the follicle bulge niche. A
similar mechanism is involved in human hair gray-
ing. In (B), the highly organized repigmentation of
the amputated zebrafish fin is demonstrated.
Whereas little repigmentation is seen in the first
2 days following amputation (left), a progressive
increase in melanocytes are seen over the next 7
days (right) such that the original pigmentation
pattern is fully recapitulated by 2 weeks.

mouse strains that showed evidence of

premature graying, but without affecting

other cell lineages (Nishimura et al.,

2005). The bcl2�/�mouse is born with es-

sentially normal hair pigmentation, but

the hair grays after the first hair cycle. Ex-

amination of the hair follicles during the

second hair cycle revealed a complete

lack of dct+ melanoblasts in the bulge

area as well as differentiated melano-

cytes in the hair matrix, or bulb, area, as

shown in Figure 2A. This strongly sug-

gests that the melanocyte stem cell is

lost in these animals, since the stem cells are known to exclu-

sively give rise to the differentiated cells in the hair matrix. The

loss of bcl2 in the bulge leads to apoptosis of the stem cell. In

contrast, examination of the mitf vit/vit mouse, which carries

a mild hypomorphic allele of mitf, demonstrates a slower graying

phenotype that correlates with a gradual loss of melanocyte

stem cells from the bulge niche. At early to midanagen of the

third hair cycle, the dct+ cells in the bulge region were seen to

be pigmented and appeared dendritic, both of which are charac-

teristics of premature or ectopic differentiation. In young humans

with colored hair (age 20–30), unpigmented mitf+ cells were seen

in the bulge area, whereas in 40–60 year olds with mild graying,

pigmented mitf + cells were seen in the bulge area, similar to the

mitf vit/vit mice. By age 70–90, the mitf-positive cells were com-

pletely lost. Because pigmented melanocytes should never be

seen in the bulge stem cell niche, the process of hair graying is

likely due to a gradual failure to maintain the melanocyte stem

cell self-renewal in the niche. How mitf might mediate this self-

renewal program is poorly understood, but one mechanism

might relate to its role in cell-cycle entry. Overexpression of

mitf activates p16Ink4a expression, which causes cell-cycle ar-

rest and a morphology consistent with melanocyte differentia-

tion (Loercher et al., 2005). Mitf may also act to promote cell-

cycle arrest through upregulation of p21Cip1, which may act

together with p16Ink4a to promote the effect of mitf on the cell

cycle (Carreira et al., 2005).

A Different Spin on Melanocyte Stem Cells: Fin

Regeneration in the Zebrafish

The regenerative capacity of the teleost fin has been well recog-

nized for decades (for a review, see Poss et al., 2003). In the ze-

brafish, the caudal (tail) fin is the most commonly studied

system, primarily because it is easy to perform a precise
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amputation, and the stages of regeneration in this region can be

precisely well defined. Following initial amputation of the distal

fin, epithelial cells migrate over the wound and cover the surface.

The next stage, essential for normal regrowth, consists of blas-

tema formation, a proliferative mass of mesenchymal cells that

will ultimately form the basis of the new fin structures (Poleo

et al., 2001). It is unclear precisely what these cells are com-

posed of in terms of their multipotency and whether they repre-

sent dedifferentiated cells present in the fin or whether there is

a latent pool of stem cells that then migrate to the blastema. Fol-

lowing blastema formation is the regenerative growth phase,

marked by a much more rapid cell turnover (i.e., the G2 cycle

length shrinks from 6 hr in blastema formation to 1 hr during out-

growth) (Nechiporuk and Keating, 2002). During zebrafish fin

regeneration, the pigment cells completely regrow so that by 1

to 2 weeks postamputation (Figure 2B), the melanocyte pattern

is essentially undistinguishable from normal fins.

The first indication that regenerative pigmentation was derived

from a melanocyte stem cell and not simply migration came from

observations of fin regenerates in the presence of the melanin-

synthesis inhibitor PTU (Rawls and Johnson, 2000). Since PTU

will inhibit melanogenesis only in newly formed melanocytes

(i.e., those that differentiated form an unpigmented precursor),

Rawls amputated fins and allowed them to regenerate in the

presence or absence of PTU. PTU almost completely blocked

visible melanocyte regeneration, but upon removal of the drug,

pigmentation of the regenerate commenced within hours. This

strongly indicated that the cells that form the melanocyte regen-

erate in the fin had previously differentiated from an unpig-

mented, latent precursor. That this precursor cell was likely

a stem cell with unlimited self-renewal was suggested by the

fact that the fin melanocytes would regenerate through at least

10 successive rounds of amputation and regeneration. To get

at the molecular regulation of this potential stem cell, fin regen-

eration was examined in the zebrafish kit mutant (Rawls and

Johnson, 2001). This revealed an almost complete lack of mela-

nocyte regeneration by day 7, and examination of the melano-

blast marker dct in the regenerating fin revealed a complete

lack of expression in the mutant animals. This indicates that kit

is required for at least a subset of regenerating melanocytes in

the fin, but kit mutants eventually do recover the melanocyte pat-

tern in the fin regenerate (Figure 2B), albeit at a much slower rate

than wild-type. This is consistent with the existence of a kit-

independent population of unpigmented melanocyte precursors

in the zebrafish fin, although the molecular identity of these cells

remains obscure.

Small Molecules Reveal Novel Pathways in Melanocyte

Stem/Progenitor Function

One of the major advantages of studying regeneration in the ze-

brafish is the opportunity to perform forward genetic screens.

This allows for unbiased identification of genes that may play

a role in melanocyte regeneration. Recently, Yang et al. used

a clever approach to studying melanocyte regeneration in zebra-

fish larvae (Yang et al., 2007). Previous studies had demon-

strated that the small molecule MoTP could ablate melanocytes

or melanoblasts in the zebrafish larvae and that regeneration of

new melanocytes occurred from proliferation of an undifferenti-

ated precursor (Yang and Johnson, 2006). Taking this as a start-

ing point, Yang performed a parthogenesis (early-pressure) ENU

mutagenesis screen in which they searched for mutants that had

normal ontogenetic melanocyte development during embryo-

genesis but failed to regenerate larval melanocytes after MoTP

treatment. This approach holds significant promise for dissect-

ing the genetic pathways that separate the developmental

requirement of embryonic melanocyte formation from those of

regenerative melanocytes. Two mutants isolated from that

screen, named eartha and julie, encode the gfpt1 (glutamine:-

fructose-6-phosphate aminotransferase 1) and skiv2l2 (super-

killer viralicidic activity 2-like 2) genes, respectively. These two

genes appear to affect different aspects of melanocyte regener-

ation. Gfpt1 mutants develop melanoblasts up to the dct+ stage

but fail to melanize beyond that, suggesting that the gene is re-

quired for the final steps in melanocyte development. In contrast,

the skiv2l2 mutants fail to develop dct+ melanoblasts after MoTP

treatment, suggesting that this gene is necessary for early prolif-

eration of melanocyte precursors prior to the dct+ stage. It is ev-

ident that both of the genetic pathways identified by this screen

will require further investigation in the future to understand their

specific role in melanocyte regeneration beyond the zebrafish.

Developmental Pathways Implicated in Melanoma
Melanoma is the deadliest form of skin cancer (Miller and Mihm,

2006). The incidence of melanoma has been increasing more

rapidly than any other solid tumor, in part likely due to enhanced

detection. There are no particularly effective therapies once the

disease is metastatic, highlighting the need for new approaches

to identifying genetic events that initiate and maintain the tumor.

The past decade has seen a dramatic increase in our knowledge

of melanoma biology, and identification of sentinel events such

as mutations of the B-raf oncogene (Davies et al., 2002) and

loss of the CDKN2A locus (Yang et al., 2005) have been well

documented. For many years, it has been well recognized that

melanomas express a number of markers, discussed above,

that are typical of the embryonic and regenerating melanocyte

lineage (i.e., endothelin and c-kit). However, one challenge in

interpreting this observation has been to understand whether

these markers are simply ‘‘bystanders’’ or whether they serve

specific oncogenic functions. Emerging evidence would suggest

that ‘‘lineage specific’’ markers in melanomas play important

pathological roles, several examples of which will be discussed

below.

Mitf

The concept of ‘‘lineage addiction’’ emphasizes that particular

oncogenic events are specific to the cellular lineage from which

the cancer arises and may only act to promote cancer when in

the correct cellular context. The mitf gene itself is perhaps the

most typical example of this model. Mitf had been known to be

expressed on melanoma cells for several years, although its pre-

cise role in tumorigenesis remained obscure (King et al., 2001).

Garraway et al. used an integrative genomic approach with

high-density SNP arrays to identify areas of copy number gains

or losses in a panel of human melanomas and found that mitf it-

self was amplified in 15%–20% of human melanomas (Garraway

et al., 2005). Mitf demonstrated oncogenic activity, but only in

the presence of aberrant MAP kinase activity induced by B-raf

mutations, suggesting that contextual cues are required for full

oncogenic transformation (i.e., a lineage-specific gene such as

mitf plus a driver mutation such as B-raf). But how does mitf

Cell Stem Cell 3, September 11, 2008 ª2008 Elsevier Inc. 247

Cell Stem Cell

Review



act as an oncogene? One potential mechanism involves dysre-

gulation of the cell-cycle arrest that is typically induced by mitf

in melanocytes. This likely involves either p16 (CDKN2A) and/

or Rb. Indeed, loss of p16 (either through deletion of silencing)

is commonly seen in melanomas (Bardeesy et al., 2001), which

suggests one mechanism by which cell-cycle arrest can be

avoided in melanoma cells that express mitf. Beyond its effects

on the cell cycle, mitf exerts broad transcriptional effects on

other genes in the melanocyte lineage such as dct and tyrp1,

as discussed above. Supporting the important function of mitf

as a transcriptional regulator in melanoma, Fisher et al. recently

utilized a ChiP-CHIP approach to understand the promoter

regions where mitf binds in the MALME melanoma cell line and

found that mitf binding sites generally correlate with nucleo-

some-free sites, as expected (Ozsolak et al., 2007). Importantly,

though, the frequency of nucleosome-free promoters was

strongly dependent upon lineage. In melanocytes and mela-

noma cells, expression of both mitf and the melanocyte-lineage

gene SILV correlate, and the SILV promoter is nucleosome-free

in these cell types. In contrast, SILV and mitf are nearly absent in

breast epithelial and breast cancer cells lines, and the SILV

promoter was occupied by a positional nucleosome in these

nonmelanocyte cell lines. Thus, it would appear that regulation

of lineage-specific oncogenes is in part related to the chromatin

accessibility of the promoters in question.

Endothelins

Lahav et al. examined the role of endothelin signaling on mela-

noma growth nearly a decade ago (Lahav et al., 1999). EDNRB

was found to be highly expressed on nearly all melanoma cell

lines tested and appeared to correlate with the differentiation

state of the cell. Treatment of melanoma cells with the specific

EDNRB antagonist BQ788 caused the cells to differentiate and

cease proliferating, in part due to an increase in apoptosis. Inhi-

bition of EDNRB also inhibited tumor growth in a nude mouse

transplant model. The molecular mechanism by which endothe-

lins promote growth of melanoma cells has remained somewhat

obscure, but more recent data indicates that endothelins are

able to transcriptionally upregulate expression of snail, which

allows for downregulation of E-cadherin and upregulation of

N-cadherin, likely contributing to melanoma cell invasiveness

(Bagnato et al., 2004). Perhaps even more strikingly, the endo-

thelins signal through the MAP kinase pathway (Simonson

et al., 1992), providing a significant cooperation with the dysre-

gulated MAPK signaling induced by oncogenic B-raf. Knock-

down of mutant B-raf V600E in melanoma cells (with shRNA)

led to decreased proliferation and reduced colony formation by

80%, an effect that could be partly overcome by addition of en-

dothelin-1 (Christensen and Guldberg, 2005). Finally, the endo-

thelins, particularly ET-1, are known to be hypoxia-responsive

genes, and ET-1 acts to stabilize the HIF1-alpha monomer, lead-

ing to increased production of angiogenic factors such as VEGF

and PGE2 (Spinella et al., 2007). Blockade of EDNRB using the

small molecule A192621 suppresses HIF1a and VEGF-associ-

ated neovascularization in a xenograft model, suggesting that

this pathway is an important mechanism of angiogenesis in mel-

anoma (Grimshaw, 2007). Based in part upon these observation,

a small phase II trial of bosentan (a mixed EDNRA/EDNRB antag-

onist) in advanced melanoma was recently completed, which re-

sulted in ‘‘disease stabilization’’ in 6/32 patients(Kefford et al.,

2007), which is not atypical for small molecule based therapeu-

tics currently in clinical trials.

c-kit

The role of kit in human melanoma has undergone significant

evolution over the past several years. C-kit expression is typi-

cally lost with melanoma progression, suggesting that its loss

is associated with invasion and/or metastasis (Natali et al.,

1992). Nevertheless, several clinical trials have examined the ef-

ficacy of c-kit inhibition, using the multikinase inhibitor imatinib

mesylate, in melanoma. All three of these trials yielded disap-

pointing and essentially negative results (Eton et al., 2004; Ugurel

et al., 2005; Wyman et al., 2006). However, it was recently re-

ported that a significant proportion of melanomas arising from

atypical areas, such as mucosal surfaces, palms, soles, and nail-

beds, harbor activating mutations of the c-kit gene. In one report,

21% of mucosal melanomas had activating kit mutations (Curtin

et al., 2006) and up to 15% of anal melanomas had similar muta-

tions (Antonescu et al., 2007). Most of these mutations occurred

in the juxtamembrane region of the gene, which is known to be

predictive of clinical responses to the kit-inhibitor imatinib mesy-

late. In a preliminary report of a single patient (from a larger phase

II trial) with anal melanoma and a kit mutation, a dramatic re-

sponse to imatinib was seen, with over 50% tumor size reduction

at 4 weeks and an almost complete absence of metabolic activ-

ity seen by FDG-PET (Hodi et al., 2008). This new data indicates

that well-selected patients, with acral or mucosal melanoma and

activating kit mutations, are likely to benefit from this therapy.

Given the paucity of any effective therapy for metastatic mela-

noma, this may represent a significant advance in the treatment

of this subset of patients. The true efficacy of c-kit inhibitors in

melanoma await proper clinical trials using patients selected

for mutation or overexpression.

Notch

Several studies have implicated dysregulated notch signaling in

patients with melanoma. One of the earliest observations by

Hoek et al. was the finding that notch2 and hey1 (a downstream

target) was upregulated by expression microarrays in several

human melanoma cell lines (Hoek et al., 2004). Around the

same time, Qin noted that the gamma-secretase inhibitor

DAPT potently induced apoptosis in 9/9 tested melanoma cell

lines, but not in normal melanocytes, suggesting a particularly

pathogenic function of notch in melanoma (Qin et al., 2004).

Interestingly, the apoptosis was, in part, related to an upregula-

tion of the BH3 family member, NOXA, and was essentially p53

independent. Activation of notch in vertical growth phase

(VGP) melanoma cells, using an activated NICD construct, led

to increases in growth and metastatic potential that was in part

related to activation of the MAP kinase and AKT pathway (Liu

et al., 2006). Consistent with this, a dominant-negative form of

MAML1 (a component of the notch transcriptional complex)

resulted in a decrease proliferation rate in primary, although not

metastatic, melanoma cells, indicating a stage-specific require-

ment for notch signaling (Balint et al., 2005). This pathway has

begun to come under intense scrutiny as a therapeutic target,

with new trials in breast cancer and likely in melanoma in the

near future.

Wnt5a

Although mutations in beta-catenin, the central activator of Wnt

signaling, are seen in melanoma, their frequency is quite low and
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the role of canonical Wnt in melanoma awaits further refinement

(Pollock and Hayward, 2002). In contrast, overexpression of

wnt5a, a member of the ‘‘noncanonical’’ Wnt pathway, may

play an important role in melanoma invasion and metastasis. Us-

ing a hierarchical clustering algorithm, wnt5a defined a subclass

of cutaneous melanoma that exhibited invasive and motile

properties as determined by scratch assay and collagen gels

(Bittner et al., 2000). Wnt5a may mediate this process via induc-

tion of vimentin and snail, factors known to induce the epithelial-

mesenchymal transitions necessary for melanoma metastasis

(Dissanayake et al., 2007).

Slug/Snail

The migratory nature of neural crest derived melanocytes led

Weinberg’s group to question whether these developmental pro-

grams were recapitulated during melanoma metastasis (Gupta,

et al., 2005). Using an identical set of oncogenic insults, including

Ras activation, in three different cell lines, only the transformed

melanocytes gave rise to clinically evident metastasis. This

was due in part to expression of slug, a transcription factor

known to be associated with melanocyte migration during devel-

opment. Whether all cancers have metastatic programs that are

specific to the cell of origin remains an unanswered question,

and awaits further investigation.

dct

Given the central role of dct as a marker of the embryonic mela-

noblast and the melanocyte stem cell, it is reasonable to ques-

tion whether this enzyme plays a pathogenic role in melanoma.

This question has received little attention thus far, but several

studies indicate that this gene may have an important role in

this disease. One of the most interesting observations came

from a study that used a retroviral insertional mutagenesis

screen to isolate melanoma cells that were resistant to the che-

motherapeutic agent cisplatin (Pak et al., 2004). Using gene

expression analysis, the chemoresistant cell line was found to

overexpress dct, and that dct expression correlated well with

chemoresistance in a variety of melanoma cell lines. This corre-

lation seemed to also hold for radiation resistance, as induced by

UV-B. The molecular mechanism of this remains unclear, but one

suggested possibility is that UV-B, which is known to upregulate

dct, activates the ERK/MAPK pathway, which may in part ex-

plain the chemo and radiation resistance of these cells. Dct

may also play a role in progenitor proliferation. Using the

dct-LacZ mouse system, Jiao et al. demonstrated that in the de-

veloping central nervous system, dct+ cells are localized to the

ventricular zone, where neuronal stem cells reside. siRNA medi-

ated knockdown of dct decreases neural progenitor proliferation

Table 1. Genes Demonstrated to Have Important Functions in Embryonic Development of the Melanocyte Lineage, and Corresponding

Roles in Regeneration and Melanoma

Development Regeneration Cancer

mitf Required for segregation of

multipotent neural crest stem

cells toward a melanocyte fate

in zebrafish and mammals

Expressed in mouse hair follicle

during hair cycling, and lost in

bcl2�/�-mediated hair graying

(mice, humans)

Amplified and/or overexpressed in

a subset of human melanomas,

represents a lineage specific

oncogene

EDNRB Multiple roles, including early

induction of melanocyte precursors

(mammals, fish) as well as

fate restriction of bipotent

glial-melanocyte toward pigment

fate (mouse, humans)

unknown EDNRB widely expressed on many

human melanomas. Inhibition of this

pathway leads to apoptosis and may

have clinical benefit

C-kit Required for a subset of embryonic

melanocytes in zebrafish, and

differentiation of melanoblasts

in concert with mitf in mice.

Loss leads to human piebaldism

Mutations in kit lead to defects in

melanocyte regeneration in the

zebrafish fin, although there is

kit-independent regeneration.

Expression typically lost with human

melanoma progression. A subset of

mucosal melanomas harbor

activating kit mutations which may

derive clinical benefit from imatinib

slug Early marker of the neural crest

(mouse, fish, Xenopus), required for

epithelial-mesenchymal transition of

migratory neural crest cells

unknown Expression of slug is associated with

metastatic potential of melanoma

(mouse)

dct Central marker of melanoblasts and

melanocyte stem cells (mice), also

directly involved in pigmentation of

the terminally differentiated

melanocyte (mammals, fish)

Expression increases during larval

regeneration in zebrafish and in

regenerating hair follicles of mouse

Expressed in a subset of human

melanomas, but function unclear

notch Notch mutants fail to develop neural

crest in zebrafish. Required for

cranial neural crest induction in frog

and chick

Dominant-negative notch in mouse

melanocyte lineage leads to hair

graying

Inhibition of gamma-secretase leads

to apoptosis of many human

melanoma cells lines. Inhibitors are

in clinical development

wnt Required for early fate decisions

toward a melanocyte fate (mice),

and directly activates the mitf

promoter (mammals and fish)

Inhibition of wnt abrogates entire

zebrafish fin regenerate; specific

effect on melanocytes unclear

Wnt5a overexpressed in a subset of

human melanoma, and associated

with increased invasiveness
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by 48% (Jiao et al., 2006). Although this effect has not yet been

tested in neural crest progenitors and the mechanism remains

obscure, future experiments aimed to elucidate the role of this

melanoblast marker in melanoma seem warranted.

Remaining Questions
It is abundantly clear that human cancers share important char-

acteristics with both development and tissue regeneration (Table

1). This occurs not only at the cellular level, but also on genetic,

genomic, and likely epigenetic bases. One important question

left unanswered by these studies is the relationship of the embry-

onic and adult melanocyte stem cell to the melanoma stem cell.

Recent work by Frank (Schatton et al., 2008) has demonstrated

that the ABCB5 transporter can be utilized to selectively isolate

a subpopulation of melanoma cells that fulfill the criteria of a tu-

mor stem cell, including self-renewal and differentiation capac-

ity. Importantly, a novel anti-ABCB5 antibody could significantly

inhibit tumor growth after transplantation, highlighting the poten-

tial of cancer stem cell based therapeutics in humans with this

disease. What is the overlap between the melanoma stem cell

and normal tissue melanocyte stem cell in terms of signaling

pathways? Several models exist for the generation of a tumor

stem cell: a transformation of an otherwise normal melanocyte

stem/progenitor cell or acquisition of self-renewal capacity in

a more differentiated cell type. In the former case, it is expected

that inhibition of a signaling pathway common to both the tumor

and normal stem cell may have significant antitumor effect but at

the cost of severe inhibition of normal melanocyte regeneration.

This would have significant biological repercussions, since

a continued supply of melanocytes is required for protection

against UV-induced DNA damage. Further molecular char-

acterization of the stem cells present in each period of life—

embryonic, adult, and cancerous—are required to define the dif-

ferences between these cell types and capitalize on these for the

design of rational therapeutic targets in melanoma.
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